هدف از انجام این پروژه طراحی و پیاده سازی یک سیستم است که تصویر دو چهره ورودی که برای احراز هویت به آن داده میشود را با هم مقایسه کرده و عددی را به عنوان میزان تشابه آن دو چهره برگرداند. سپس برای پذیرش احراز هویت، یک آستانه را برای میزان شباهت تعیین کند که اگر میزان شباهت از آن مقدار بیشتر بود، سیستم آن مقایسه را به عنوان تطبیق بپذیرد و در غیر اینصورت آن را رد کند. این حد آستانه باید به گونه ای باشد که خطا روی پایگاه داده آزمون، کمترین میزان باشد. منظور از خطا، جمع مقدار FAR1 و FRR2 می‌باشد.

  • برای دریافت داده‌های آموزش و آزمون لطفا به آزمایشگاه دکتر آنالویی مراجعه نمایید.

۱. مقدمه

تشخیص هویت همواره از اهمیت زیادی بین انسان ها برخوردار بوده و است. استفاده از روش هایی مانند داشتن پسورد و پین کد برای تشخیص هویت با خطر فراموشی و مبادله بین افراد مواجه اند، امروزه برای تشخیص هویت با قابلیت اطمینان بالا از سیستم های بیومتریک3 استفاده می شود. واژه بیومتریک از زبان یونانی می آید و برگرفته از دو واژه بیو4 به معنی زندگی و متریک5 به معنی اندازه گیری است. بیومتریک فناورى و علم اندازه گیرى و تحلیل خصوصیات بدن انسان مانند اثرانگشت، شبکیه چشم،الگوى رگ ها،عنبیه،الگوهاى صوتى،الگوهاى چهره است که به منظور تشخیص هویت انجام مى پذیرد. بنابراین در سیستم های بیومتریک، شناسایی افراد با تشخیص "این افراد که هستند" به جای "این افراد چه می دانند" صورت می گیرد ، زیرا پسورد و پین کد ممکن است فراموش شوند یا بین افراد مبادله شوند اما در مورد ویژگی های فیزیولوژیکی این امکان وجود ندارد.[3]

چند نمونه ازسیستم های بیومتریک:[3]

  1. بازشناسی چهره6

  2. عنبیه7

  3. اثر انگشت8

  4. رگ انگشت9

  5. بازشناسی لب10

  6. بازشناسی صوت11

    جدول زیر به مقایسه سیستم های بیومتریک نام برده شده می پردازد.

    مقایسه سیستم های بیومتریک

روش های بیومتریک جدید و در حال ظهور :[3]

  1. بازشناسی عطر انسان12

  2. بیومتریک EEG13

  3. طیف سنجی پوست14

  4. بافت بند انگشت15

  5. بازشناسی ناخن16

در این پروژه به بررسی سیستم بیومتریک مبتنی بر بازشناسی چهره پرداخته می شود.

۲. بازشناسی چهره

بازشناسی چهره عملی است که ما انسان ها به طور معمول در زندگی روزانه خود انجام می دهیم. افزایش روزافزون رایانه های خانگی، سیستم های ارزان قیمت روی میزی باعث شده تا توجه های زیادی روی پردازش های خودکار بر روی تصاویر شامل احراز هویت بیومتریک، بازشناسی ها، تعامل انسان و کامپیوتر و مدیریت چند رسانه ای جلب شود. پژوهش ها و توسعه هایی در زمینه بازشناسی چهره نیز به همین دلایل در حال انجام و گسترش است.
بازشناسی چهره نسبت به دیگر روش های بیومتریک نظیر تشخیص اثر انگشت و عنبیه مزایایی دارد. در کنار طبیعی بودن و غیر قابل بروز بودن این نوع بازشناسی، مهم ترین مزیت بازشناسی چهره این است که صورت می تواند در هر فاصله ای گرفته شود و پوشش داده شود. بازشناسی چهره به عنوان یکی از قدرتمند ترین تکنولوژی های بیومتریک در پیشرفت هایی در دستگاههای عکس برداری، ذخیره سازی حجم زیادی از تصاویر در حافظه و یا وب و افزایش امنیت نقش بسیار مهمی را ایفا کرده است.[1]

وظایف بازشناسی چهره[2]

  1. تایید17 چهره : در برنامه های کاربردی مورد نیاز است که دارای تعامل با کاربر به صورت ادعای هویت می باشند و به آن تطبیق یک به یک18 هم گویند.
    تست تایید با تقسیم افراد به 2 گروه انجام می شود:

    1. مشتریها19 : افرادی که تلاش می کنند با هویت خودشان دسترسی پیدا کنند.

    2. وانمود کنندگان20 : افرادی که در تلاشند تا با یک هویت اشتباه دسترسی پیدا کنند مثلا با هویتی که برای سیستم شناخته شده است اما متعلق به آن فرد نیست.
      در این میان تعدادی از وانمود کنندگان موفق می شوند تا دسترسی پیدا کنند که درصدشان محاسبه و به عنوان نرخ پذیرش اشتباه (FAR ) گزارش می شود و تعدادی از مشتری ها رد شده و نمی توانند دسترسی پیدا کنند که درصدشان به عنوان نرخ رد کردن اشتباه (FRR) گزارش می شود.

  2. شناسایی چهره21 : عمل شناسایی بیشتر در برنامه های کاربردی مورد نیاز است که بر اساس تعامل کار نمی کنند و به آن تطبیق یک به چند22 نیز گویند. مانند برنامه های کاربردی نظارت. تست شناسایی با توجه به در نظر داشتن این فرض است که تمامی چهره های موجود در تست متعلق به افراد شناخته شده اند و به درصد درست شناسایی چهره ، نرخ شناسایی صحیح (CIR23) و به درصد اشتباه شناسایی چهره ، نرخ شناسایی اشتباه (FIR24) گویند.

  3. لیست مراقبت25 : تعمیمی است از شناسایی چهره که شامل افراد ناشناخته هم می شوند. تست لسیت مراقبت هم مانند تست شناسایی CIR و FIR را گزارش می دهد اما می تواند FRR و FAR مربوط به خودش را هم داشته باشد تا میزان حساسیت لیست مراقبت را نشان دهد مثلا به این معنی که چه مقدار از افراد ناشناخته به عنوان در دسته افراد در لیست مراقبت قرار می گیرند( FAR )

مراحل سیستم بازشناسی چهره:[4]
روند بازشناسی چهره به طور معمول دارای چهار مرحله وابسته به هم می باشد:

  1. کشف چهره26

  2. نرمال سازی27 چهره

  3. استخراج ویژگی28

  4. بازشناسی چهره

که مراحل فوق را به طور مختصر شرح می دهم:
اولین گام در روند بازشناسی چهره گرفتن عکس از چهره می باشد، این کار معمولاً با استفاده از یک دوربین صورت می گیرد.

  1. کشف چهره: در این مرحله تصمیم گرفته می شود که کدام یک از پیکسل ها بخشی از چهره می باشند و کدام یک نمی باشند و به این ترتیب فضای چهره29 را از پس زمینه اش جدا می کند. در حالتی که بازشناسی چهره در یک ویدئو مورد بررسی قرار می گیرد، چهره ای که تشخیص داده شده است باید در بین چندین فریم30 به صورت پیوسته پیگیری شود . به طور معمول، روش هایی که به نشانه گذاری31 چهره می پردازد، روش هایی که به یافتن رنگ چشم در ناحیه دایره ای می پردازند و همچنین روش هایی که از الگوی ویژگی استفاده می کنند در کشف چهره مورد استفاده قرار می گیرند.

  2. نرمال سازی چهره: زمانی که چهره کشف شد و از پس زمینه اش جدا شد، باید نرمال شود، به این معنی که چهره باید از لحاظ اندازه، زاویه، نور پردازی و غیره استاندارد شود که این امر به تصاویر موجود در پایگاه داده ای که از آن استفاده می شود وابسته است. برای نرمال سازی تصویر ، نشانه گذاری های کلیدی چهره باید به صورت کاملاً دقیق انجام شود. با استفاده از این نشانه گذاری ها الگوریتم نرمال سازی می تواند تصویر را برای اعمال تغییرات اندکی میزان کند.

  3. استخراج ویژگی: بعد از اتمام فرایند نرمال سازی نوبت به مرحله استخراج ویژگی می رسد. در این مرحله یک نمایش ریاضی که به آن الگوی بیومتریک یا مرجع بیومتریک گفته می شود تولید می گردد و در پایگاه داده ذخیره شده و پایه و اساس هر عمل یازشناسی را تشکیل می دهد.

  4. بازشناسی چهره: در آخرین مرحله، از الگوی بیومتریک تولید شده در مرحله قبل استفاده می شود به این صورت که برای سیستم های بازشناسی یک به یک، الگوی بیومتریک دو چهره با هم مقایسه شده و خروجی به صورت بله و خیر می باشد و در سیستم های بازشناسی یک به چند، الگوی بیومتریک چهره مورد نظر با الگوی بیومتریک سایر چهره های موجود در پایگاه داده مقایسه می شود و خروجی به گونه ایست که یک شناسه و یک سطح اطمینان را به سیستم بازمی گرداند. چالش برانگیز ترین قسمت در این سطح پیدا کردن یک پارامتر خوب برای میزان شباهت بین تصاویر است.

تصویر زیر مراحل یک سیستم بازشناسی چهره را نشان می دهد.

مراحل سیستم بازشناسی چهره

چالش های یک سیستم بازشناسی چهره [4]

  1. کیفیت تصویر32 : مهم ترین انتظاری که از یک سیستم بازشناسی چهره می توان داشت این است که از تصاویر با کیفیت بالا استفاده کند و یک تصویر با کیفیت، تصویریست که تحت شرایط دلخواه ما گرفته شده باشد. کیفیت تصویر برای استخراج ویژگی بسیار مهم است. اگر کیفیت تصویر خوب نباشد، حتی بهترین الگوریتم های بازشناسی چهره نیز بد عمل می کنند.

  2. نور پردازی33 : یک چهره با تغییر میزان نور متفاوت به نظر می رسد. عکس زیر تصویر چهره در نورپردازی های متفاوت را نشان می دهد.

    تصویر چهره در نورپردازی های متفاوت

  3. زوایای متفاوت34 : معمولاً داده های آموزشی که در یک سیستم بازشناسی تصویر استفاده می شود، چهره از روبه رو می باشد، زیرا تصویر از رو به رو نسبت به زوایای دیگر شامل اطلاعات مهمتری می باشد. مشکل زمانی پیش می آید که سیستم بخواهد یک تصویر زاویه دار را با استفاده از پایگاه داده ای از تصاویری از رو به رو شناسایی کند، بنابراین باید در پایگاه داده از هر چهره، تصاویری از زوایای متفاوت نگه داری شود. تصویر زیر پایگاه داده ای از چهره یک فرد در زوایای مختلف را نشان می دهد.

    پایگاه داده ای از چهره یک فرد در زوایای مختلف

الگوریتم های بازشناسی چهره[10]
در این قسمت به معرفی کلی تعدادی از الگوریتم های بازشناسی چهره پرداخته می شود:

  1. الگوریتم تحلیل اجزای اصلی(PCA35 ): الگوریتم PCA که به نام روش Karhunen-Loeve نیز شناخته می شود، یکی از محبوب ترین روش ها برای انتخاب ویژگی و کاهش ابعاد می باشد. بازشناسی چهره انسان با استفاده از PCA اولین بار توسط Turk and Pentland انجام شد. این روش بازشناسی که به نام روش چهره ویژه نیز شناخته می شود یک فضای ویژگی معرفی می کند که ابعاد فضای داده را کاهش می دهد و از این فضای داده کاهش یافته برای بازشناسی استفاده می شود. قدرت متمایز سازی ضعیف در کلاس و همچنین محاسبات بالا، از معایب رایج و شناخته شده PCA محسوب می شوند. این معایب توسط الگوریتم LDA برطرف شد.

  2. الگوریتم تحلیل جدا سازی خطی (LDA36 ): الگوریتم LDA یکی از برجسته ترین الگوریتم های استخراج ویژگی است، اما بسیاری از سیستم های بازشناسی چهره ای که از این الگوریتم استفاده می کنند، ابتدا با استفاده از PCA ابعاد را کاهش می دهند سپس از LDA برای افزایش قدرت جداسازی استفاده می کنند. علت این است که LDA مشکل کوچک بودن سایز نمونه را دارد در حالیکه برای جداسازی خوب ویژگی های انتخاب شده نیاز است که از هر کلاس تعداد زیادی نمونه داشته باشیم، بنابراین اگر بخواهیم مستقیماً از LDA استفاده کنیم، جداسازی ضعیفی صورت می گیرد.

  3. الگوریتم SVM37 : این الگوریتم یکی از مفیدترین تکنیک ها در مساله دسته بندی به شمار می آیدکه یک مثال روشن آن بازشناسی چهره می باشد. به هر حال زمانی که بردار ویژگی هایی که نمونه ها را مشخص می کند اطلاعات مربوط به یک سری از ورودی ها را از دست می دهد نمی توان از SVM استفاده کرد.

  4. الگوریتم تحلیل اجزای مستقل (ICA38 ): الگوریتم ICA روشی است برای یافتن فاکتورها و اجزای اصلی از داده های آماری چند بعدی. برای تصاویر چهره ای که دارای زاویه است و یا از نظر شدت نور شرایط متفاوتی دارد، استفاده از الگوریتم ICA مفید است زیرا نتایج بهتری را نسبت به سایر سیستم های موجود می دهد. آنچه ICA را از سایر الگوریتم ها متمایز می سازد این است که ICA به دنبال اجزاییست که هم از نظر آماری مستقل باشند و هم غیر گاوسی باشند.

  5. الگوریتم شبکه عصبی مصنوعی (ANN39 ): پرسپترون چند لایه (MLP40 ) با الگوریتم یادگیری فید فوروارد41 به دلیل سادگی و قابلیت اش در تطابق الگوی با ناظر، برای این سیستم ها انتخاب شده است.

۳. کارهای مرتبط

در [12] که بازشناسی چهره با استفاده از چهره ویژه42 است از روشی برای بازشناسی چهره استفاده شده که بر مبنای کد گذاری و کد گشایی تصویر چهره می باشد. این روش شامل دو مرحله می باشد: استخراج ویژگی با استفاده از الگوریتم PCA و بازشناسی با استفاده از شبکه عصبی back propagation. روش چهره ویژه از الگوریتم PCA استفاده می کند که راه کارامدی را برای داشتن فضای ابعاد کمتر در اختیار ما قرار می دهد.

۴. آزمایش‌ها

۵. کارهای آینده

۶. مراجع

[1] Stan, Z. Li, and K. Jain Anil. "Handbook of face recognition." (2005).
[2] PRASHANT KUMAR, SINI SHIBU. Authorization of Face Recognition Technique Based on Eigen Faces, International Journal of Advanced Research in Computer and Communication Engineering Vol. 3, Issue 9, September 2014
[3] Rupinder Saini , Narinder Rana, Comparison of various biometric methods, International Journal of Advances in Science and Technology (IJAST)Vol 2 Issue I (March 2014)
[4] Ambika Ramchandra, Ravindra Kumar, Overview Of Face Recognition System Challenges, INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 8, AUGUST 2013
[5] Liton Chandra Paul , Lakshman Saha, Abdulla Al Suman, Md. Najim Uddin Mondal, Methodological Analysis of Principal
Component Analysis Method, International Journal of Scientific & Engineering Research Volume 4, Issue3, March-2013
[6] S.Kalaimagal, M.Edwin Jaya Singh, Face Recognition Using Gabor Volume Based Local Binary Pattern, International Journal of Advanced Research in Computer Science and Software Engineering, Volume 2, Issue 6, June 2012
[7] V. Balamurugan, Mukundhan Srinivasan, Vijayanarayanan.A, A New Face Recognition Technique using Gabor Wavelet Transform with Back Propagation Neural Network, International Journal of Computer Applications (0975 – 8887) Volume 49– No.3, July 2012
[8] Sarala A. Dabhade, Mrunal S. Bewoor, Face Recognition using Principle Component Analysis, Emerging Trends in Computer Science and Information Technology -2012, Proceedings published in International Journal of Computer Applications
[9] Abhishek Bansal, Kapil Mehta, Sahil Arora, FACE RECOGNITION USING PCA & LDA ALGORITHMS, 2012 Second International Conference on Advanced Computing & Communication Technologies
[10] Sujata G. Bhele and V. H. Mankar, A Review Paper on Face Recognition Techniques, International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 1, Issue 8, October 2012
[11] Kyungim Baek, Bruce A. Draper, J. Ross Beveridge, Kai She, PCA vs. ICA: A comparison on the FERET data set, Department of Computer Science Colorado State University
[12] Prof. V.P. Kshirsagar, M.R.Baviskar, M.E.Gaikwad, Face Recognition Using Eigenfaces, Dept. of CSE, Govt. Engineering College, Aurangabad (MS), India.
[13] Erum Naz, Umar Farooq, Tabbasum Naz, Analysis of Principal Component Analysis-Based and Fisher Discriminant Analysis-Based Face Recognition Algorithms, IEEE--ICET 2006 2nd International Conference on Emerging Technologies Peshawar, Pakistan, 13-14 November 2006

۷. پیوندهای مفید


  1. False Accept Rate

  2. False Reject Rate

  3. bimetric

  4. bio

  5. metric

  6. Face recognition

  7. Iris

  8. Finger print

  9. Finger vein

  10. lip recogniton

  11. Voice recognition

  12. Human scent recognition

  13. electroencephalogram

  14. Skin spectroscopy

  15. Knuckles texture

  16. Finger nail recognition

  17. Verification

  18. one-to-one

  19. clients

  20. imposters

  21. Identification

  22. one-to-many

  23. Correct Identification Rate

  24. False Identification Rate

  25. Watch List

  26. Face detection

  27. Normalization

  28. Feature extraction

  29. Face space

  30. frame

  31. landmark

  32. Image Quality

  33. Illumination Problem

  34. Pose Variation

  35. Principal Component Analysis

  36. Linear Discriminant Analysis

  37. Support Vector Machine

  38. Independent Component Analysis

  39. Artificial Neural Network

  40. Multi-Layer Perceptron

  41. Feed Forward

  42. Eigenface

سید حسن طباطبایی

با سلام و خسته نباشید، کار شما نسبتا خوب است، اما در قسمت تقسیم بندی روشهای بازشناسی چهره، میتوانید از دسته بندی جامعتری که در مرجع 1 موجود است استفاده نمایید، همچنین جا دارد که در قسمت کارهای مرتبط، به چند کار علمی دیگر نیز اشاره کنید. همچنین، مراجع خود را با ترتیب حضور در مقاله تنظیم نمایید.