مورد
هدف از انجام این پروژه طراحی و پیاده سازی یک سیستم است که تصویر دو عنبیه ورودی که برای احراز هویت به آن داده میشود را با هم مقایسه کرده و عددی را به عنوان میزان تشابه آن دو عنبیه برگرداند. سپس برای پذیرش احراز هویت، یک آستانه را برای میزان شباهت تعیین کند که اگر میزان شباهت از آن مقدار بیشتر بود، سیستم آن مقایسه را به عنوان تطبیق بپذیرد و در غیر اینصورت آن را رد کند. این حد آستانه باید به گونه ای باشد که خطا روی پایگاه داده آزمون، کمترین میزان باشد. منظور از خطا، جمع مقدار FAR1 و FRR2 میباشد.
برای دریافت دادههای آموزش و آزمون لطفا به آزمایشگاه دکتر آنالویی مراجعه نمایید.
۱. مقدمه
هدف از احراز هویت با عنبیه تشخیص با اطمینان بالا در زمان واقعی از هویت شخص توسط آنالیز ریاضیات از الگوهای تصادفی که قابل روئیت درون عنبیه یک چشم از فاصله یکسان هستند. شناسایی انسانها در میان تکنولوژی بیومتریک بسیار رایج شده است ،تکنیک های بیومتریک متفاوت مثل تشخیص اثر انگشت،چهره،صدا،عنبیه و غیره که از ویژگی های فیزیکی یا رفتاری انسان برای تشخیص هویت استفاده میشود.
تشخیص عنبیه یکی از امن ترین و معتبرترین روشها در میان بیومتریک های دیگراست و در این زمینه الگوریتم های خیلی قابل اعتماد و معتبر و سریع برای اجرا کردن نیاز دارد.در سیستم های اولیه برای تایید کاربران از کارتهای با یوزر و پسورد استفاده می کردند مثل سیستم های خودپرداز بانکی اما این روش تشخیص هویت دو مشکل اساسی دارد یکی اینکه کاربران بر اساس چیزی که همراه خود دارند احراز هویت میشوند که ممکن است گم شود یا به سرقت رود و دیگر فراموش کردن پسورد است، بیومتریک ها راه حل آسان ،بادقت و صحت بالایی را برای این مشکلات فراهم کردند این راه حل شناسایی افراد رابه بدن انسان یعنی ویژگی های منحصر به فردآن مربوط میکند این روش ها بر مبنای چیزی که هستید عمل می کنند نه چیزی که می دانید یا همراه خود دارید.
عنبیه یک مجموعه پیچیده از ماهیچه ها هستند که در جلوی چشم انسان قرار گرفته بنابراین مشاهده و اندازه گیری آن آسان است و توسط قرنیه و پلک چشمان شدیدا محافظت شده است و احتمال آسیب دیدن آن در طول حیات انسان کم است،ساختار از بافت عنبیه در طول حیات انسان غیر قابل تغییر و پایدار توصیف شده است و درجه بالایی از توانگری ساختاری و تقریبا وابستگی ناچیزی به نوع ژن انسان دارد و این روشی برای تشخیص دوقلوهای همسان هستند.
۲. کارهای مرتبط
پردازش تصویر:
مراحل پردازش تصویر شامل دریافت تصویر ،جداسازی عنبیه،نرمال سازی، استخراج ویژگی ،تطبیق ، بهبود کیفیت تصویر است
تصاویر گرفته شده از عنبیه فقط شامل ناحیه عنبیه نبوده و در آن ها مردمک ،پلک ها،مژه ها و انعکاسات نیزدیده می شوند برای پردازش های بعدی ابتدا باید تصاویر اولیه عنبیه که در پایگاه UBIRIS وCASIA برگرفته شده قطعه بندی شوند برای تشخیص هویت با استفاده از تصاویر عنبیه تشخیص نویزها و قطعه بندی دقیق تصویر عنبیه از اهمیت ویژه ای برخوردار است .
قطعه بندی :
در اولین مرحله پیش پردازش جداسازی مرزهای عنبیه از قسمتهای باقیمانده از تصویر چشم ورودی انجام می گیرد در این جداسازی مرز داخلی عنبیه با مردمک و مرز خارجی آن با صلبیه با استفاده از لبه یاب canny مشخصات این دوایر درونی وبیرونی تعیین می شود وبعد به وسیله تبدیل هاف نقاط روی مرزهای دایروی یا اشکال با معادله پارامتری مشخص تعیین می شودو مشخص کردن پلک ها و همچنین جداکردن مژه ها انجام می شود تکنیکهای گوناگونی توسط محققان در مرحله قطعه بندی استفاده شده مثل عملگر انتگرال دیفرانسیل ،تبدیل هاف،روش کانتور فعال و غیره که برخی از آنها رادر این بخش معرفی می کنیم .
برخی از روشهای موجود این مرحله:
داگمن ( Daugman) در روش خود از عملگر انتگرال دیفرانسیل برای تشخیص مرزهای عنبیه استفاده کرد و پلک های بالا و پایینرا توسط دو کمان جدا می کند .روش انتگرال- دیفرانسیل را می توان به صورت تغیرات تبدیل هاف در نظر گرفت زیرا از مشتق اول تصویر برای جستجو استفاده می کند این روش در صورتی که تصویر اولیه دارای نویز باشد مانند نویز ناشی از انعکاسات ممکن است جواب نادرستی بدهد چون به صورت محلی کار می کند به علاوه زمان زیادی برای پیدا کردن مرزها لازم دارد[1]
وایلدز (Wildes) عمل قطعه بندی را با استفاده از هیستوگرام و فیلتر کردن انجام داده و برای پیدا کردن لبه های پلک ها آن ها را با سهمی های افقی مدل سازی می کند .نویزهای ناشی از مردمک و مژه ها در این روش در نظر گرفته نشده اند.[1]
تیسه (Tisse) روشی را برای قطعه بندی تصویر چشم بر مبنای عملگرهای انتگرال دیفرانسیل و تبدیل هاف ارائه کرده و با این کار زمان محاسباتی روش داگمن را کاهش داده و احتمال قرار گرفتن مرکز خارج از تصویر چشم را از بیین برده است در این روش نویزهای ناشی از مردمک و مژه ها در این روش نویزهای ناشی از مردمک و مژه ها در نظر گرفته نشده اند.[1]
ما (Ma) از فیلتر کردن و پیدا کردن نقاط لبه و تبدیل هاف برای قطعه بندی استفاده کرده است در این روش نویز ناشی از مردمک و مژه ها در نظر گرفته نشده اند.
کنگ و ژانگ ( Kong and Zang) روشی برای شناسایی مژه ها ارائه کرده اند در این روش مژه ها قابل جدا سازی با استفاده از فیلتر های گابور یک بعدی و مژه های به هم چسبیده با استفاده از واریانس شدت نور شناسایی می شوند سپس ناحیه حلقوی عنبیه با تبدیل مختصات دایروی به کارتزین به یک نوار نگاشته شده و با استفاده از لبه یاب canny و تبدیل هاف مرزها بدست می آیند. [1][2]
عددk1 به عنوان بایاس با مقدار 45- برساس آزمایش ها تعریف شده است و عملامت به عنوان عملگر کانولوشن نشان داده می شود
مM شدت پنجره کوچک و2 ( 2N+1) پنجره کوچکو به اندازه 55و K2یک بایاس با مقدار 6 تعریف شده است.
عددP یک مجموعه پیکسل متعلق به عنبیه وNP تعدادی از پیکسل های درp را نشان میدهد.
این ترتیب فرمولها به طور خلاصه در زیر بیان شده است[1]و[2]
الگوریتم های لبه یابی تصویر
الگوریتم Canny ، الگوریتم Sobel، الگوریتم Zero Cross ، الگوریتم Log ، الگوریتم Prewitt ، الگوریتم Roberts
الگوریتم لبه یاب Canny
1- تضعیف نویز:
تصاویر گرفته شده با دوربین غیر ممکن است که شامل مقداری نویز نباشد بنابراین برای جلوگیری از اینکه نویزها به اشتباه لبه در نظر گرفته نشوند باید نویز هارا تضعیف کنیم بنابراین ابتدا تصویربا فیلتر گاوسی مات کرده به صورت شکل زیر
وهسته فیلتر گاوسی با انحراف استاندارد 1.4 درزیر با Kنشان داده شده است[3]
تاثیر مات کردن تصویر مورد آزمایش با فیلتر گاوسی با Gx و Gyنشان داده شده است.
2-پیدا کردن نقاطی که می توانند به عنوان لبه در نظر گرفته شوند:
در این مرحله از گرادیان تصویر استفاده می شود و نقاطی که گرادیان در آن ها بیشینه است به عنوان لبه لبه انتخاب میشوند.
3- حذف نقاطی که احتمال نقطه ی لبه بودن آن کم است:
بسیاری از پیکسلهای خروجی از مرحله 2 احتمالا لبه درست در تصویر هستند اما تعدادی ممکن است پیکسل های نویزی باشند و ساده ترین راه برای از بین بردن این پیکسل های نویزی این است که دو حد آستانه Thو ) Tl ( Double Threshould در نظر بگیریم اگر یک گرادیان پیکسل بیشتر از حد آستانه بالا Th باشد آن گرادیانت پیکسل به عنوان یک لبه در نظر گرفته می شود.اگر یک گرادیانت پیکسل کمتر از حد آستانه پایین Tlباشد آن نقطه حذف می شود اگر یک گرادیانت پیکسل بین دو حد آستانه قرار گیرد تنها در صورتی پذیرفته می شود که به پیکسل بالاتر از حد آستانه متصل باشد.
در الگوریتم Canny هر جا سطح شدت روشنایی کم باشد لبه یابی ضعیف و هرجا سطح روشنایی زیاد باشد لبه یابی بهتر و قوی تر است وزمانی که نیاز به لبه یابی قوی باشد با در نظر گرفتن شیب ها از Canny استفاده می کنیم.[20]
الگوریتم لبه یاب Sobel
الگوریتم سوبل از ترکیب یک تابع مشتق گیر و یک تابع نرم ساز گوسی بدست می آید و به دو صورت عمودی و افقی با ضریب پیکسل های قبلی منفیو ضریب پیکسل های مثبت و همچنین همسایگی های عمودی مقدار 2را روی تصویر اعمال میکند الگوریتم Sobel برای لبه یابی عمودی مناسب می باشد و جزء ضعیف ترین لبه یاب ها است وفقط لبه هاییکه تغییرات شدت نور در انها زیاد است را می تواند تشخیص دهد [10]
الگوریتم لبه یاب Prewitt
شباهت زیادی به الگوریتم Sobel دارد با این تفاوت که ضرایب ماسک آنه با هم فرق می کند[9]
الگوریتم لبه یاب Roberts
این الگوریتم به نویز حساسیت زیادی دارد و پیکسل های کمتری را برای تقریب گرادیان به کار می برد در ضمن نسبت به الگوریتم Canny قدرت کمتری دارد.[8]
ماسک لاپلاسین
لاپلاسین یک تابع دو بعدی از مشتق دوم آن تابع بدست می آید و مستقل از جهت مرزها است به همین دلیل این عملگر یک مقدار اسکالر است نه یک بردار .این عملگر به صورت زیر تعریف می شود
لاپلاسین به طور معمول برای کشف لبه تصاویر دیجیتالی استفاده می شود در این کاربرد تصویر کانوالیت می شود با لاپلاسین از یک تابع گوسی 2 بعدی به فرم زیر
انحراف استاندارد:
حساسیت عملگر لاپلاسین به نویز خیلی زیاد است زیرا با نقاط عبور از صفر ارتباط دارد این در حالی است که در بیشتر موارد سیگنال نویز دارای مقادیر کوچک و نزدیک صفر است به همین دلیل ابتدا یک فیلتر پایین گذر به تصویر اعمال می شود تا اثر نویز را کاهش دهد و سپس عملگر لاپلاسین اعمال می شود[.7]
روش های مشخص کردن مرز داخلی و خارجی عنبیه و پلک ها و جداکردن مژه ها
داگمن اولین روش محاسباتی تشخیص عنبیه را که شامل قطعه بندی است نشان داد. داگمن از یک عملگر دیفرانسیل انتگرال برای پیدا کردن مرزهای داخلی و خارجی عنبیه استفاده کرد ،عملگر دیفرانسیل-انتگرال مردمک و لیمبوسرا کانتورهای دایروی فرض می کند و به عنوان یک لبه یاب دایره ای عمل میکند در این روش پلک های بالا و پایین با استفاده از عملگر انتگرال دیفرانسیل جدا می شوند
عملگر دیفرانسیل انتگرال به صورت زیر تعریف می شود[5]
که( I(x,y یک تصویر شامل یک چشم است ،عملگرانتگرال دیفرانسیل دامنه (x ,y ) را بیشتر برای ماکزیمم در مشتق بخش بلور شده جستجو میکند با ارزش برای شعاع r در حال افزایش از کانتور نرمال شده انتگرال از (I(x ,y در امتداد یک کمان دایره ای با شعاع r و مرکز (X,Y) ،نماد * کانولوشن و تابع نرم سازی همانند گوسی با مقیاس به صورت زیر تعریف شده است.
عملگر انتگرال دیفرانسیل به عنوان یه لبه یاب دایره ای رفتار می کند و در آن ماکزیمم گرادیانت را روی یک فضای پارامتری3 بعدی پیدا می کند بنابراین هیج پارامتر آستانه وجود ندارد همانند لبه یاب Canny.
درجداسازی سیتم تشخیص عنبیه وایلدز از تبدیل هاف دایره ای استفاده می کند و تصاویر برای تخمین زدن 3 پارامتر از یک دایره (x,y,r) برای استفاده در معادلات تجزیه و تحلیل می شوند
ازآنجایکه (Xi ,Yi) یک پیکسل لبه هستند و i ایندکس از پیکسل لبه می باشد
محل (x,y,r) با مقدار ماکزیمم از H(x , y , r) به عنوان بردار پارامتر برای برجسته ترین مرزهای دایره ای انتخاب شده است ،در مدل سیستم وایلدز پلک ها همانند کمان سهمی وار هستند و پلک های بالا و پایین توسط تبدیل هاف دایروی پیدا میشوند یک نقطه ضعف از لبه یاب و روش تبدیل هاف استفاده از آستانه در لبه یاب است که با تنظیمات متفاوت از مقدار آستانه ممکن است نتایج متفاوت در لبه ها تاثیر در نتایج حاصل شده در روش تبدیل هاف داشته باشد. 5
تبدیل هاف دایروی:
تبدیل هاف ، الگوریتمی است که با استفاده از آن می توان اشکال مشخصی را در تصویر شناسایی و جدا کرد برای پیدا کردن یک شکل خاص با تبدیل هاف لازم است که آن شکل دارای فرم پارامتری مشخصی باشد به همین دلیل از تبدیل هاف معمولا برای پیدا کردن اشکالی مثل خط، دایره و سهمی استفاده می شود برای پیدا کردن دایره در تصویر ابتدا با استفاده از یک الگوریتم لبه یاب مثل CannyیاSobel نقاط لبه تصویر را پیدا میکنیم سپس با استفاده از تبدیل هاف دایروی شعاع و مرکزمختصات مردمک و نواحی عنبیه را پیدا می کنیم معادله دایره بفرم پارامتری (x - a)2+(y - b)2= r2 میباشد.با قرار دادن مقادیر مختلف به جای پارامترهای (a ,b, r)تعداد نقاط لبه را که روی دایره ای که با هر دسته از پارامترهااست بدست می آید میشماریم و پارامتر های دایره ای که بیشترین تعداد نقاط لبه روی آن قرار دارد را به عنوان دایره مورد نظر انتخاب می کنیم.برای دیتابیس CASIA هنگامی که رنج شعاع مردمک از 28 تا 75 پیکسل است رنج شعاع عنبیه از 90 تا 150 در نظر گرفته می شود.تبدیل هاف برای تاثیر بیشتر و پردازش دقیق ابتدا مرز صلبیه و عنبیه و سپس مرز مردمک و عنبیه مشخص میکند.[6]
روش کاموس و وایلدز شبیه روش داگمن می باشد الگوریتم شان فضایی را برای 3 پارامتر محیط مرکز(X ,Y)و شعاع( r) با به حداکثر رساندن تابع انجام می شود
این روش روی تصاویری که شدت روشنایی نواحی عنبیه و مردمک و صلبیه بطور واضح جدا شده است و روی تصاویری که شامل هیچ انعکاساتی و یا فاکتور نویزی دیگر نباشد خیلی دقیق انجام می شود و وقتی با داده نویزی سرو کار داریم دقت الگوریتم به طور قابل توجهی بدتر می شود
روش مارتین راچ هم شبیه روش داگمن می باشد این روش یک تصویر با مقیاس خاکستری را دریافت میکند و بسط هیستوگرام را بکار می برد و سعی میکنو متوسط تفاوت هایدشدت روشنایی از پنج دور متوالی را به حداکثر رساند با تعریف زیر
بترتیب افزایش های ازشعاع و امتداد و شدت روشنایی تصویر هستند
این روش 3 پارامتر محیط N3 (مرکز (x ,y) و شعاع(r ) را پیدا می کند از آنجائیکه تفاوت شدت روشنایی بین 5 محیط پی در پی ماکزیمم است.
نرمال سازی:
عنبیه می تواند در سایز های متفاوت با تغییر کردن مردمک ضبط شده باشد بخاطر تجهیزات چراغانی سایز از مردمک ممکن تغییر کند این کد عنبیه نرمال سازی شده در استخراج ویژگی و مقایسه پدیده تاثیر خواهد گذاشت و نرمال سازی تبدیل دایره به بلوک مستطیلی است تا اینکه قطر ثابت برای افزایش عملکرد داشته باشد
در روش نرمال سازی داگمن عنبیه بعد از جداسازی مرزهای عنبیه به یک بلوک مستطیلی با یک سایز ثابت شده نرمالیز شده به طوریکه شعاع دایره در رابطه با عرض بلوک مستطیلی و تغییر مکان زاویه دار در رابطه با طول از بلوک بوده است مانند شکل زیر [11]
به طور رسمی برگه لاستیکی یک مدل خطی هست که به هر پیکسل عنبیه صرفنظر از سایزش و اتساع مردمک اختصاص می دهد، یک جفت از مختصات واقعی (r, θ)جایی که r هست روی فاصله واحد [0, 1] و θ یک زاویه در رنج [0, 2π] است و نگاشت دوباره از تصویر عنبیه I(x, y) از مختصات کارتزین (x, y) به ابعاد سیستم مختصات قطبی متحدالمرکز (r, θ) که به صورت زیر می تواند نمایش داده شود
از آنجاییکه x(r, θ) و y(r, θ) به عنوان ترکیب خطی از هر مجموعه از نقطه های مرزی مردمک (xp(θ), yp(θ)) و مجموعه از نقطه های مرزی لیمبوس در امتداد محیط خارجی از عنبیه (xs(θ), ys(θ)) مرز از صلبیه تعریف شده است
ه I(x, y) ناحیه عنبیه تصویر است (x, y) مختصات کارتزین اصلی و (r,θ) مختصات قطبی نرمالیز شده و (xp, yp)و (xi,yi)مختصات از مردمک و مرز های عنبیه در امتداد مسیر θ هستند[11]-[12]
روش نرمال سازی دایره های مجازی
در این متد تصاویر عنبیه اول برای داشتن قطر ثابت مقیاس شده است تا اینکه وقتی دو تصویر را باهم مقایسه می کنیم یکی را بتوان در مقایسه با تصویر مرجع در نظر گرفت این روش نسبت به تکنیک های دیگر متفاوت کار میکند در یک زمان دو عنبیه با قطر ها و ویژگی های یکسان از ناحیه عنبیه با ذخیره مقدارهای شدت روشنای در امتداد دایره های متحد المرکز با مبدا در مرکز از مردمک استخراج شده است یک راه حل نرمال سازی انتخاب شده است بنابراین تعدادی از نقاط دیتا استخراج شده از هر دو عنبیه یکسان است
این متد به طور اساسی با مدل داگمن یکسان است بهر حال مقیاس بندی در تطابق با زمان و است و مرتبط با با مقایسه عنبیه به جای مقیاس بندی به تعداد قطر های ثابت است[12]
استخراج ویژگی های عنبیه
در این مرحله ویژگی های استخراج شده بیشتر برای مقایسه و برای محاسبه دقت می توانند استفاده شوند و ویژگی های استخراج شده برای بوجود آوردن یک نمونه بیومتریک استفاده خواهد شد
فیلتر گوسی:
فیلتر لاپلاسین برای رمز گذاری ویژگی ها توسط فیلتر کردن ناحیه عنبیه استفاده می شود تصاویر فیلتر شده به صورت هرم لاپلاسین نمایش داده می شود این هرم باچهار سطح دقت مختلف برای تولید کد عنبیه و استخراج ویژگی استفاده می شود در این روش نتیجه دیتا فشرده شده بدست آوردن دیتا های مهم می باشد دیتا فشرده به عنوان کد عنبیه می توانن ذخیره شوند.
تبدیل موجک:
تبدیل موجک ناحیه عنبیه را به اجزای با دقت های متفاوت تجزیه میکند موجک ها موج های کوچکی از تغییرات فرکانسی و حوزه زمان محدود شده هستند. تبیل موجک بهتر از تبدیل فوریه است به طور معمول موجک های استفاده شده موجک هار،موجک کلاه مکزیکی،موجک سیملت (Symmlet ( هستندیک بانک از فیلتر های موجک برای نرمال سازی ناحیه عنبیه بکار برده شده است هر فیلتربا هر موجک تعریف شده توسط تابع های مقیاس گذاری کار می کند و خروجی از فیلتر کد عنبیه را تولید می کند. [12]
فیلترهای گابور:
انواع گوناگونی از فیلتر های گابور وجود دارند فیلتر های گابور به یک تابع هارمونیک پاسخ می دهند هر الگو برای استخراج کردن اطلاعات فازی با استفاده از موجک گابور 2 بعدی پیاده سازی شده است . اطلاعات فازی در چهار ربع نقشه پیچیده نسبت داده شده است هر پیکسل در دو بیت اطلاعات در کد ذخیره شده است اطلاعات فازی استخراج شده به عنوان ویژگی است.
12
تکنیک مسیر گوشه:
نقطه های مسیر گوشه می توانند از تصاویر عنبیه نرمالیز شده با استفاده از ماتریس کواریانس از تغییرات در شدت روشنایی در هر نقطه پیدا شده باشند[12]
تبدیل کسینوس گسسته :
در این متد ویژگی ها توسط تفاوت از ضرایب تبدیل کسینوس گسسته از تکه های مستطیل استخراج شده است تصاویر نرمالیز شده درون تکه های 128 تقسیم شده است به طور متوسط عرض پنجره بیشتر با استفاده از پنجره آویزان برای کاهش تاثیر نویز استفاده شده است این تکنیک کد گذاری ساده با پیچیدگی پایین است [12]
*تبدیل هیبرت:
این روش برای استخراج اطلاعا مهم از بافت عنبیه استفاده شده است[12]
تطابق:
نمونه های بوجود آمده از مراحل قبل به یک متریک تطابق نیاز دارند این متریک تشابه بین مقایسه کلاس بین و کلاس داخل را اندازه گیری می کند.[12]
فاصله اقلیدسی:
این روش برای مقایسه دو نمونه برای شناسایی عنبیه استفاده شده است و این روش برای اندازه گیری از تشابه بین دو نمونه تعریف شده است و توسط تئوری فیثاغورس برای بدست آوردن فاصله بین دو نقطه محاسبه شده است[12]
نزدیکترین خط ویژگی :
یک روش رده بندی موثر در مرحله تطابق الگو است نزدیکترین خط ویژگی در میان هر دو مقدار ویژه از کلاس یکسان عبور می کند و بیشتر تغییرات بردار ویژه از مقدار ویژه را استخراج می کند فاصله از یک مقدار ویژه با بردار ویژه محاسبه می شود.[12]
تطابق درخت K_D:
این روش خیلی موثری است از این نظر که در روشهای جستجو استفاده شده است اشکال اصلی از درخت K_D فقط تعداد محدود شده از کدهای عنبیه در درخت می توانند بارگذاری شوند زیرا با افزایش در سایز درخت بهره وری جستجو کاهش می یابد.[12]
۳. آزمایشها
۴. کارهای آینده
۵. مراجع
[1] H. Mehrabian1, P. Hashemi-Tari2 Pupil Boundary Detection for Iris Recognition Using Graph Cuts
[2]International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.4, Jul - Aug. 2013 pp-1885-1 889 ISSN: 2249-6645
[3] Wai-Kin Kong and David Zhang Detecting Eyelash and Reflection for Accurate Iris Segmentation
[4]Canny Edge Detection 09gr820 March 23, 2009
[5] International Journal of Modern Engineering Research (IJMER)www.ijmer.com Vol.3, Issue.4, Jul - Aug. 2013 pp-1885-1 889 ISSN: 2249-6645
John G. Daugman High Confidence Visual Recognition of Persons by a Test of Statistical Independence IEEE TRANSACTIONS ON PA’ITERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 11, NOVEMBER 1993
[6]Sunita Lokhande1 and Vishram . N. Bapat WAVELET PACKET BASED IRIS TEXTURE ANALYSIS FOR PERSON AUTHENTICATION Signal & Image Processing : An International Journal (SIPIJ) Vol.4, No.2, April 2013
[7]Pieter G. van Dokkum Cosmic-Ray Rejection by Laplacian Edge Detection WAVELET PACKET BASED IRIS TEXTURE
ANALYSIS FOR PERSON AUTHENTICATION
[8]Hugo Proenc¸ a and Lu´ıs A. Alexandre Iris Recognition: An Analysis of the Aliasing Problem in the Iris Normalization Stage
[9]Lei Yang,Dewei Zhao An Improved Prewitt Algorithm for Edge Detection Based on Noised Image 2011 4th International Congress on Image and Signal Processing
[10] O. R. Vincent, O. Folorunso A Descriptive Algorithm for Sobel Image Edge Detection Proceedings of Informing Science & IT Education Con ference (InSITE) 2009
[11] Sunil Chawla and 2Aashish Oberoi A Robust Algorithm for Iris Segmentation and Normalization using Hough Transform Global Journal of Business Management and Information Technology.Volume 1, Number 2 (2011), pp. 69-76
[12]Deepika Prashar1 A Close Approach to Iris Recognition System IOSR Journal of Computer Engineering (IOSR-JCE)
e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 16, Issue 4, Ver. VI (Jul – Aug. 2014), PP 35-38
www.iosrjournals.org
[13]Carles Fernandez´ †, D´ıdac Perez´ †, Carlos Segura†, Javier Hernando‡A Novel Method for Low-constrained Iris Boundary Localization
[14]Noureddine Cherabit*, Fatma Zohra Chelali, Amar Djeradi Circular Hough Transform for IrislocalizationScienceandTechnology 2012, 2(5): 114-121 DOI: 10.5923/j.scit.20120205.02
[15]Masek, Libor. Recognition of human iris patterns for biometric identification. Diss. Master’s thesis, University of Western Australia, 2003.
[16]Jarkko Vartiainen"Iris Recognition Systems and methods" Lappeenranta University of Technology, Department of Information Technology P.O. Box 53851 Lappeenranta, Finland
[17]Adam Czajkaa and Andrzej Pacuta,b"Iris Recognition System Based on Zak-Gabor Wavelet Packets"a Biometric Laboratories, Research and Academic Computer Network NASK, Warsaw, Poland
[18]F.Alaoui K.Assid " Application of Blind Deblurring Algorithm for Iris Biometric"
International Journal of Computer Applications (0975 – 8887) Volume 79 – No3, October 2013
[19]John Daugman, PhD, OBE"How Iris RecognitionWorks"University of Cambridge, The Computer Laboratory, Cambridge CB2 3QG, U.K.www.CL.cam.ac.uk/users/jgd1000
[20]Bogdan Hoanca-Kenrick Mock-Justin Weaver"Real-Time Continuous Iris Recognition for
Authentication Using an Eye Tracker". Retrieved :, 2012
[19]Daugman, J. (n.d.). How Iris Recognition Works. Retrieved April 14, 2010, from http://www.cl.cam.ac.uk/~jgd1000/irisrecog.pdf
[20]Leila Fallah Araghi, Hamed Shahhosseini, Farbod Setoudeh"IRIS Recognition Using Neural Network" Retrieved :,march 17 2010
[21]Shirke Swati D et al ,Int.J.Computer Technology & Applications,Vol 4 (1), 1-7" IRIS RECOGNITION USING GABOR " ISSN:2229-6093
[22] Mansi Jhamb & Vinod Kumar Khera" IRIS Based Human Recognition System"
W.W.Boles, « a security system based on human iris identification using wavelet transform »,
First international conference on knowledge-based intelligent electronic systems, Adelaide,
Australia. Ed, 21-23 may 1997.
[23] Ali Abdul Mun'im Ibrahim" IRIS RECOGNITION USING GABOR FILTERS" Al – Taqani , Vol.21, No. ٦ , 2008
[24]T.S. Lee, “Image Representation Using 2D Gabor Wavelets”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol.18, pp.959- 971, Oct. 1996
[25]www.findbimetrics.com-Biometrics Iris Recognition Guides and Article R.G. Johnson, "Can iris patterns be used to identify people",chemical and laser sciences division LA-12331-PR, Los Alamos National Laboratory, Los Alamos Calif, 1991
[26]W.W. Boles ,and B. Boashah, "A Human Identification Technique Using Images of the Iris and Wavelet Transform", IEEE Trans. On Signal Processing,vol.46,pp. 1185- 1188,April 1998
[27]C. C. TSAI, J. S. TAUR AND C. W. TAO" Iris Recognition Using Gabor Filters and the Fractal Dimension"
[28]L. Ma, T. Tan, Y. Wang, and D. Zhang, “Local intensity variation analysis for iris recognition,” Pattern Recognition, Vol. 37, 2004, pp. 1287-1298
۶. پیوندهای مفید
False Accept Rate
False Reject Rate